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In this paper, the effective capacitance between the origin (0, 0, 0) and any other lattice
site (l1, l2, l3), in an infinite simple cubic (SC) network consisting of identical capacitors
each of capacitance C, has been expressed rationally in terms of the known value go
and π. The asymptotic behavior is also investigated, and some numerical values for the
effective capacitance are presented.
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1. Introduction

Analysis of electric networks that are composed of identical resistors attracts the

attention of both physicists and electrical engineers.1–17 The main problem is to

find the equivalent resistance between two different sites. One can see from previous

studies that perfect and perturbed networks have been studied well for different

lattices.

On the other hand, the calculation of the effective capacitance in infinite

networks consisting of identical capacitors is of the same interests, as calculation of

equivalent resistance. Little attention has been paid on this problem. In a previous

work, we used the lattice Green’s function (LGF) method to study the effective

capacitance in both the perfect and perturbed infinite square network consisting

of identical capacitors.18–20 Later on, we used the superposition method which is

based on charge distribution to calculate the effective capacitance in both an infinite

perfect square and simple cubic (SC) network consisting of identical capacitors.21,22

The results obtained using these two methods where in excellent agreement.

The LGF plays an important role in the theory of condensed matter physics. It

was a field of interests for many years.23–48 The LGF for cubic lattices has been
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investigated by many authors,41–48 and the so-called recurrence formulae which

are often used to calculate the LGF of the SC at different sites are presented.44,45

The values of the LGF for the SC lattice have been recently exactly evaluated,38

where these values are expressed in terms of the known value of the LGF at the

origin. The LGF defined in our work is related to the Green’s function (GF) of the

tight-binding Hamiltonian (TBH).30

The outline of this work is oriented as follows. In Sec. 2, some basic definitions

are introduced. In Sec. 3, an application to the LGF of the SC network has been

applied to calculate the effective capacitance between the origin and any lattice

site (l1, l2, l3) in the infinite SC network. We close this work (i.e. Sec. 4) with a

discussion to the results obtained in this study.

2. Basic Definitions and Preliminaries

First of all, consider an infinite d-dimensional network consisting of identical

capacitors each of capacitance C and assuming that all lattice points are specified

by the position vector

r = l1a1 + l2a2 + · · ·+ ldad , (1)

where l1, l2, . . . , ld are integers (positive, negative or zero) a1, a2, . . . , ad are

independent primitive translation vectors, in the case that all these independent

primitive translation vectors have the same magnitude (i.e. |a1| = |a2| = · · · =
|ad| = a), then the d-dimensional lattice is called a hypercube.

For such an infinite network the effective capacitance between the origin and

any other lattice site (l1, l2, . . . , ld) reads:
18

C(l1, l2, . . . , ld) =
C∫ π

−π

dx1

2π
· · ·

∫ π

−π

dxd

2π

1− exp(il1x1 + · · ·+ ildxd)
d∑

i=1

(1− cosxi)

. (2)

On the other hand, the LGF for a d-dimensional hypercube has the following form:30

G(l1, l2, . . . , ld) =

∫ π

−π

dx1

2π
· · ·

∫ π

−π

dxd

2π

exp(il1x1 + il2x2 + · · ·+ ildxd)

2
d∑

i=1

(1− cosxi)

. (3)

Now, the energy dependent LGF of the tight-binding Hamiltonian defined for a SC

lattice is defined as:30

G(E; l1, l2, l3) =

∫ π

−π

dx1

2π

∫ π

−π

dx2

2π

∫ π

−π

dx3

2π

cos(l1x1 + l2x2 + l3x3)

E − cosx1 − cosx2 − cosx3
. (4)

This is a generalization of the LGF defined above where we introduced a new

variable E instead of the value 3 in the denominator in Eq. (3) for d = 3.
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The LGF for the infinite SC at the origin (i.e. G(3; 0, 0, 0) = go) was first

evaluated by Watson40 where he expressed it in a closed form in terms of elliptic

integrals as:

G(3; 0, 0, 0) = go =

(
2

π

)2

(18+12
√
2−10

√
3−7

√
6)[K(ko)]

2 = 0.5054620197 , (5)

where K(ko) is the complete elliptic integral of the first kind and ko is its modulus

(i.e. ko = (2−√
3)(

√
3−√

2)).

Finally, the LGF for the infinite SC network has been expressed rationally in

terms of the known value go and π as:38

G(3; l1, l2, l3) = r1go(3, 0, 0, 0) +
r2

π2go(3, 0, 0, 0)
+ r3 . (6)

3. Application: Infinite SC Network of Identical Capacitors

In this section, we will apply the main results mentioned in Sec. 2 to the infinite SC

network which consists of identical capacitors each of capacitance C. In this case

d = 3, so the position vector becomes:

r = l1a1 + l2a2 + l3a3 . (7)

Using Eq. (2) above, the effective capacitance, in the infinite SC network, between

the origin (0, 0, 0) and any other lattice site (l1, l2, l3) reads:

C(l1, l2, l3) =
C∫ π

−π

dx1

2π

∫ π

−π

dx2

2π

∫ π

−π

dx3

2π

1− cos(l1x1 + l2x2 + l3x3)

3− cosx1 − cosx2 − cosx3

. (8)

We can easily calculate the exact value of the effective capacitance between two

adjacent lattice sites, in the infinite SC network, from the above equation (due to

symmetry reason) as:

C

C(1, 0, 0)
+

C

C(0, 1, 0)
+

C

C(0, 0, 1)
=

∫ π

−π

dx1

2π

∫ π

−π

dx2

2π

∫ π

−π

dx3

2π
= 1 . (9)

Therefore, the effective capacitance between adjacent sites is 3C. A similar result

was obtained using charge distribution method.22

Now, comparing Eq. (8) with Eq. (4) for E = 3, the effective capacitance in the

infinite SC network, between the origin (0, 0, 0) and any other lattice site (l1, l2, l3),

can be written as:

C(l1, l2, l3) =
C

[G(3; 0, 0, 0)−G(3; l1, l2, l3)]
. (10)

Finally, making use of Eqs. (6) and (10), one gets:

C(l1, l2, l3) =
C

σ1go +
σ2

π2go
+ σ3

, (11)
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Table 1. Selected values for rational numbers σ1, σ2, σ3 and effective capacitance.

The site
(σ1, σ2, σ3) σ1 σ2 σ3

Cl1,l2,l3 = C

σ1g0
σ2

π2g0
+ π3

(6, 0, 0) −34937/6 −313079/25 5454 2.08885

(6, 1, 0) 71939/24 160009/20 −9355/3 2.0871

(6, 1, 1) −10958/9 −532244/105 1632 2.08545

(6, 2, 0) −48043/36 −6635509/7350 856 2.08242

(6, 2, 1) 1205/2 11979/35 −1118/3 2.08099

(6, 2, 2) −13799/36 140621/210 60 2.07709

(6, 3, 0) −22857/32 47767227/19600 −127 2.07594

(6, 3, 1) 6164/9 −7071296/3675 40 2.07477

(6, 3, 2) −3773/12 56831/70 −10/3 2.07153

(6, 3, 3) 773/3 −249218/385 0 2.06684

(6, 4, 0) −949423/432 96920323/17640 10 2.06869

(6, 4, 1) 57667/32 −88855401/19600 −5/3 2.06777

(6, 4, 2) −36869/36 208988183/80850 0 2.06518

(6, 4, 3) 34823/96 −28097771/30800 0 2.06135

(6, 4, 4) −383051/1872 23950043/46200 0 2.05677

(6, 5, 0) −1842661/288 948892421/58800 −1/3 2.06143

(6, 5, 1) 580963/108 −657893021/48510 0 2.06072

(6, 5, 2) −25545/ 434122377/53900 0 2.05868

(6, 5, 3) 631967/468 −25009387/7350 0 2.05562

(6, 5, 4) −159139/416 41699619/43120 0 2.05187

(6, 5, 5) 13157/78 −5698667/13475 0 2.04779

where σ1, σ2 and σ3 are rational numbers related to Duffin and Shelly’s38 parameters

λ1, λ2 and λ3 as:

σ1 = 1− r1 = 1−
(
λ1 +

15

12
λ2

)
; σ2 = −r2 =

1

2
λ2; σ3 = −r3 =

1

3
λ3 . (12)

Various values for σ1, σ2 and σ3 can be obtained from Table 138 for (l1, l2, l3)

ranging from (0, 0, 0)–(5, 5, 5).

We calculated different values of σ1, σ2 and σ3 for the sites from (6, 0, 0)–(6, 5, 5)

using the following recurrence relation:44

G(l1 + 1, l2, l3) +G(l1 − 1, l2, l3) +G(l1, l2 + 1, l3) +G(l1, l2 − 1, l3)

+G(l1, l2, l3 + 1) +G(l1, l2, l3 − 1) = −2δl10δl20δl30 + 2EG(l1, l2, l3) . (13)

Here E represents the energy.

To study the asymptotic behavior of the effective capacitance — as the

separation between the origin and the site (l1, l2, l3) goes to a large value or infinity

— in this case [from Eq. (10)], the effective capacitance goes to a finite value.

To explain this point, we note that from the theory of Fourier series (Riemann’s

Lemma) that limn→∞
∫ b

a
Φ(x) cosnxdx → 0 for any integrable function Φ(x). Thus,

G(l1, l2, l3) → 0 (corresponding to the boundary condition of Green’s function at
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infinity), and as a result Eq. (10) becomes:

C(l1, l2, l3) =
C

go
=

C

0.5054620197
= 1.9783880C . (14)

When any of l1, l2, l3 → ∞.

4. Results and Discussion

We have expressed the effective capacitance between the origin (0, 0, 0) and any

other lattice site (l1, l2, l3), in an infinite SC network consisting of identical

capacitors each of capacitance C, rationally in terms of the known value go and

π. The effective capacitance is plotted against the lattice site, and from the figures

shown the effective capacitance in the infinite SC network is symmetric under the

transformation (l1, l2, l3) → (−l1,−l2,−l3) which is expected due to the inversion

symmetry of the perfect infinite network.

The calculated effective capacitance in an infinite SC network has been plotted in

Fig. 1 against the site (l, 0, 0). While in Fig. 2, the calculated effective capacitance

has been plotted against the site (l, l, l). From these figures, it is clear that the

calculated effective capacitance is symmetric. This is due to the fact that the infinite

SC network itself is symmetric and in addition the fact that the LGF is an even

function.

It also clear from the two figures that as the separation between the two sites

increases then the calculated effective capacitance approaches a finite value as shown

in Eq. (14) above.
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Fig. 1. Capacitance between the origin (0, 0, 0) and the site (l, 0, 0) along [100] direction for an
infinite SC network.
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Fig. 2. Capacitance between the origin (0, 0, 0) and the site (l, l, l) along [111] direction for an
infinite SC network.
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